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Dynamical network model of infective mobile agents
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A dynamical network (consisting of a time-evolving wiring of interactions among a group of random
walkers) is introduced to model the spread of an infectious disease in a population of mobile individuals. We
investigate the main properties of this model, and show that peculiar features arise when individuals are
allowed to perform long-distance jumps. Such peculiarities are captured and conveniently quantified by a series

of appropriate parameters able to highlight the structural differences emerging in the networks when long-
distance jumps are combined with local random walk processes.
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I. INTRODUCTION

Among the most studied models for investigating the
spread of infectious diseases, the well-known susceptible-
infected-susceptible (SIS) and susceptible-infected-recovered
(SIR) models have attracted considerable attention since
their introduction [1,2]. These models are described by two
and three coupled ordinary differential equations, respec-
tively, where the state variables correspond to the number of
susceptible (S) and infected (I) individuals in the SIS model,
and to that of susceptible (S), infected (I), and recovered (R)
individuals in the SIR model. The two models account for
two different types of infectious diseases: in the case of the
SIR model a long-life immunity is gained after the recover-
ing from the infection, while repeated infections can occur
for the same individual in the SIS model. Both models re-
produce the spread of a disease in a population of N indi-
viduals, under idealized hypotheses, such as that all the in-
dividuals have the same kind of response to the disease and
that the population mixes at random (i.e., all the individuals
have the same probability of contacting the other individu-
als).

These models have been extended in many ways, for ex-
ample, to study the disease spread in a population divided
into subgroups which may influence each other (for instance,
the case of a disease spreading from city to city by means of
travellers [3]). Other extensions have been considered, and a
great source of inspiration to mathematical epidemiology has
been recently provided by network theory and its advances.
In particular, the studies on complex networks have provided
mathematical epidemiology with new ideas and tools which
have led to models in which the structure of interactions
between individuals is taken into account. Social connections
can, indeed, be mapped into idealized network structures,
replicating the structure underlying real data (for a review on
the topic of networks and epidemic models see Ref. [4]; for
a recent review on complex networks see Ref. [5]). Recent
studies show that in many cases the resulting networks dis-
play the presence of interconnected individuals with large
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number of contacts (scale-free networks [5]) and highlight
their key role in disease spread and vaccination policies [4].
In particular, a very interesting property emerging in the
study of such scale-free networks is that the epidemic thresh-
old (a critical value of the parameters such that no infinite
epidemic can occur if they are under these values) vanishes
exactly [6-8]. Recently, the case of two pathogens in a single
population whose contacts are modelled by scale-free net-
works has been investigated in Ref. [9]. Models based on
scale-free and small-world networks have been also applied
to concrete studies on the transmission of recent diseases
such as SARS [10]. For instance, Hufnagel et al. [11] imple-
ment a very detailed probabilistic model of transmission and
recovery dynamics, in which local dynamics of disease oc-
curring in urban communities can affect each other by means
of a global connection network, based on real data, able to
emulate the civil aviation traffic.

Most of the studies presented so far concern the case of
static networks, i.e., wiring structures of connections be-
tween individuals that are given (or grown) once forever, and
that are taken as fixed in time. In the case of disease dynam-
ics, this means that the social interaction structure is fixed in
time and space. In this paper, instead, we explicitly consider
the case of dynamical networks, i.e., wirings for which the
connections between individuals are let to evolve in time.
Through the paradigm of dynamical networks, this study
tries to parallel a realistic case in which people are allowed
to move, and consequently the connection structure changes.
Precisely, the individuals constituting the nodes of the graph
are here random walkers, which may additionally perform
long-distance jumps and, similarly to the case of Refs.
[12,13], are only able to interact with individuals falling
within a given interaction radius apart from them. It must be
mentioned at this stage that mobile agents were also consid-
ered in Ref. [14], where however the system was modelled
by molecular dynamics and the only case of the SIS model
was investigated.

II. THE MODEL

Let us consider N individuals distributed in a planar
space, and let v,(¢) and 6,(¢) be the velocity and the direction
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of motion of the ith spreading agent [v,(r)
= (v cos 6,(t),v sin 6(r)), v being the modulus of the agent
velocity, which is the same for all individuals]. In our model,
the agents are random walkers that update stochastically the
direction angle 6,(r). The position and the orientation of each
particle are updated according to

x;(1 + Ar) =x,(2) + v(1) Az,

0,(t + Ar) = &(t + Ar), (1)

where x;(¢) is the position of the ith particle in the plane at
time ¢, and &,(¢) are N independent random variables chosen
at each time with uniform probability in the interval
[—r, 7). In addition, to include the possibility that individu-
als can move through the bidimensional world with time
constants much shorter than those related to disease, as in the
case of infected individuals travelling by flight, we consider
the case that individuals may perform long-distance jumps.
This is accounted for by defining a parameter pj,n, that
quantifies the probability for an individual to perform a
long-distance jump. In summary, at each time step, each
agent evolves following Egs. (1) [with v,
=(v cos 6(1),v sin 6,(¢))] with probability 1-p;,,, or per-
forms a jump with probability pj,m,. In this case Egs. (1)
with v,(r)=(vyy cos 0,(t),v,, sin 1)), where ﬁ:0.0S, are
used. In this way, an agent can make a long-distance jump
into a random position, far from its previous position. In the
following, the model is investigated as a function of the pa-
rameter pj,mp, starting from the case in which the agents are
pure random walkers (pj,m,=0) and extending it to the case
of allowed random jumps (pjymp # 0).

Like traditional SIR models, each agent has three states:
susceptible (S), infected (I), and recovered (R). A given num-
ber of individuals is taken at =0 as the seed of the infection
(In% =2%), while all the others start from the susceptible
state. The process through which the infection spreads can be
summarized as follows: an interaction radius r is defined,
such that each agent interacts at a given time with only those
agents located within a neighborhood of radius r. For a given
agent, the probability of being infected increases with the
number of infected individuals in the neighborhood. More
precisely, if an agent is in the S state at time ¢, and exactly
one of its neighbors is in the [ state, then it moves into the /
state with probability p;., and stays in the S state with prob-
ability 1 —p;,r. If N, I is the number of infected individuals in
the neighborhood of the agent, then its probability of being
infected is pooy=1—(1—=pinp)V. We further suppose that the
infection lasts 7 simulation steps, so that all infected indi-
viduals become recovered 7 simulation steps after having
assumed the [ state and, after that time, they cannot catch the
disease anymore. The size of the plane where individuals
move is L (that, from here on, will be measured in units of
the radius r), and periodic boundary conditions are consid-
ered.

III. RESULTS

Model (1) predicts that the disease spreads with an evo-
lution which resembles that predicted by classical SIR mod-
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FIG. 1. Evolution of the percentage of susceptible and infected
individuals in Eq. (1) with pjy,=0 (continuous lines) and pjump
=0.1 (dotted lines). The other parameters are N=200, v=0.03, p
=1, 1y% =2%, =15, p;,y=0.05. Results are averaged over 20 runs.

els. The model is simulated for T steps with Az=1 (arbitrary
time units). In all the simulations considered in this paper
this parameter is fixed to 7=150, which is sufficiently high
to ensure that after T steps the disease disappears, since there
are no more infected individuals in the population. During a
simulation, the number of infected grows up, reaches a peak
value, and then decreases. A typical case is shown in Fig. 1,
where it can be noticed that at the end of the simulation not
all the individuals have been infected: in fact, there is a re-
sidual percentage of susceptible individuals that cannot con-
tract the disease, since all infected individuals have been
recovered. The model also predicts that long-distance jumps
increase the spread of the infection: in presence of long-
distance jumps the maximum number of infected individuals
(defined as I,,,,) and the number of individuals which have
contracted the disease at the end of the simulation (defined as
R...,) are higher. Both the two issues have important conse-
quences, since on one hand the disease involves a higher
percentage of the population, and, on the other hand, it re-
quires more resources to deal with a higher peak of infected
individuals.

The effects of long-range jumps are similar to those of
long-range connections investigated in Ref. [4], where it is
shown that small-world networks compared to the case of
local interaction networks have more virulent infections. The
reason is that small-world networks combine two important
factors in disease spread: a high level of clustering, which
implies that the infection mostly spread on a local basis, and
a lower characteristic path length, which accounts for a rapid
epidemic spread, even towards groups located far from the
infected clusters [15].

The behavior of model (1) was also characterized with
respect to different values of the density of individuals, i.e.,
pzﬁ. As it may be intuitively expected, as the density in-
creases, more individuals contract the disease. The maximum
percentage of infected and recovered individuals at the end
of the simulation increase when density increases, as shown
in Fig. 2. As can be noticed, the curves related to the case
with pjmp=0.1 are always above those related to the case
with pj,;p=0. This allows us to conclude that the introduc-
tion of long-distance jumps (pjump=0.1) lets the infection
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FIG. 2. Maximum percentage of infected (@, circles) and recov-
ered (M, squares) individuals with respect to density p in the case
Pjump=0 (continuous lines) and pj,,=0.1 (dotted lines). In the inset
the trend of Ty vs p is shown. The other parameters of the model are
N=200, v=0.03, Iy% =2%, =15, p;,;=0.05. Results are averaged
over 40 runs.

spread on a larger percentage of individuals at any density.

For an accurate characterization of the model, it is also
important to evaluate the velocity with which the disease
spreads. To this aim, the time needed to reach the 90% of the
final value of the number of recovered individuals, defined as
Tk, is evaluated. This characteristic time is evaluated for dif-
ferent values of the density p. Results are shown in Fig. 2,
where the trend of Ty versus p is illustrated. It can be noted
that both reported curves (for Pjump=0 and pj,,=0.1) exhibit
a peak. This is due to the fact that increasing the density
leads to two opposite effects: for large values of the density
the disease spread is faster; on the contrary, when density is
low, a lower number of individuals contract the infection. In
the case of long-distance jumps, the peak is located at lower
density values. Thus, long-distance jumps have the effect of
increasing Ty for low density values, since a larger popula-
tion is involved in the disease. On the other hand, for high
density values, T decreases in presence of long-distance
jumps, since the disease spread is faster.

A further characterization of model (1) refers to the be-
havior with respect to different values of pjyy,,. The maxi-
mum percentage of infected and recovered individuals is
evaluated for different values of pj,,,. Moreover, two differ-
ent values of the density p (p=1 and p=2) are considered.
The results, shown in Fig. 3, reveal that the number of indi-
viduals which have contracted the infection grows as pjyyp is
increased. The number of recovered individuals at the end of
the simulation and the maximum percentage of infected in-
dividuals with density p=2 are higher than in the case with
p=1.

After a qualitative analysis of system behavior, adequate
parameters able to characterize and explain the system be-
havior are searched for. Since the system investigated in this
paper can be characterized by the network of interactions
between individuals, we first looked at the characteristics of
this network. This network has links which evolve in time
and thus, according to the definition discussed in Ref. [5], it
is a dynamical network. Dynamical networks arise in a large
variety of phenomena, but there is no standard way to char-
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FIG. 3. Behavior of the model with respect to pjymy,. The maxi-
mum percentage number of infected (@, circles) and recovered (H,
squares) individuals versus pj,y, for two different values of p are
shown: p=1 (continuous line) and p=2 (dotted line). The param-
eters of the model are N=200, v=0.03, Iy% =2%, =15, piy
=0.05. Results are averaged over 20 runs.

acterize their properties. The definition of clustering coeffi-
cient C, characteristic path length L and mean node degree
(k) can be adapted from the theory of networks with static
links [5], and in this case time-dependent parameters arise.
We calculated these parameters, but despite the evident dif-
ferences of the epidemic behavior in the cases pj,m,,=0 and
Pjump=0.1 previously shown, these parameters do not show
significant differences, as illustrated in Fig. 4. The conclu-
sion is that other parameters should be used to characterize
the model.

The definition of the new parameters was inspired by the
following considerations connected to the nature of the in-
vestigated model. Each infected individual may infect other
individuals during the whole duration of its infection (i.e.,
during 7 simulation steps). Therefore, each individual may
infect others if they are within its interaction radius at a
given time ¢, but also if other individuals are within its inter-
action radius at the simulation steps 7+1, ... ,7+7—1. For this
reason, a new interaction network should be defined. Let A(r)
be the interaction network at time ¢. This matrix is defined as
an adjacency matrix, in which a;(r)=1 if the jth agent is

<k>(t)
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FIG. 4. L(1), C(t), and (k)(7) for the two cases pjump=0 (continu-
ous lines) and pjym,=0.1 (dotted lines). The parameters of the
model are N=200, v=0.03, p=1, Iy% =2%, =15, p;;y=0.05. Re-
sults are averaged over 20 runs.
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FIG. 5. L(t), Cg(t), and {k)g(7) for pjymp=0 (continuous lines)
and pjump=0.1 (dotted lines). The parameters of the model are N
=200, v=0.03, p=1, Iy % =2%, =15, p;;,y=0.05. Results are aver-
aged over 20 runs.

within the interaction radius of the ith agent at time ¢, and
a;;(t)=0 otherwise [furthermore, it is assumed that a;(1)=1,
Vi=1,...,N]. The new interaction network accounting for
contacts occurring during the whole infection period is de-
fined as G(¢) for t=1,...,T—7+1 where g;(1)=1 if at least
for one k (with k=¢, ... ,t+7—1) it is verified that a;;(k)=1;
gi;(t)=0 otherwise.

The new interaction graph, defined through the G(¢) inter-
action matrix, is characterized by calculating the clustering
coefficient C;(1), the characteristic path length L(r) and the
mean node degree (k);(¢). The results are shown in Fig. 5, in
which can be clearly noted that traditional graph parameters,
evaluated on the newly defined interaction matrix, can effec-
tively characterize the differences of the epidemic behavior
shown by the two investigated cases. L;(f) and (k);(¢) oscil-
late around a (temporal) mean which is totally different in
the two cases. In particular, it is clear that the network with
Pjump=0.1 has a higher mean node degree (k)(7) and a lower
characteristic path length L;(¢) with respect to the case with
Pjump=0. The different values of these two parameters ex-
plain why the infection is more virulent in the case with
Pjump=0.1. The mean value of L(r) when pj;,=0.1 is lower
than that obtained when pj,,,=0; this explains why the in-
fection can reach the individuals of the population more eas-
ily. Similarly, since the time average of (k)s(7) is higher
when pjm,=0.1, mobile agents have more potentially infec-
tious contacts with other individuals when they are allowed
to make long-distance jumps.

The behavior of the model with respect to different values
of the density p is now characterized in terms of the new
parameters introduced, namely Lq(¢) and (k);(¢). The results
are shown in Fig. 6, where for the sake of simplicity only the
values of Lg(r) and (k);(¢) at the end of the simulation (i.e.,
at t=t;=T—7+1) are considered. The mean node degree
(k)g(ty) versus p is monotonic; in fact, as intuition suggests,
individuals in populations with higher density are more con-
nected to each other. On the other hand, the characteristic
path length has a peak and then decreases. When compared
with the characterization of the model in terms of the time T
(shown in the inset of Fig. 2), this result leads to the conclu-
sion that, at least qualitatively, the trend of L(t/) versus p
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FIG. 6. (k);(t) and Lg(t;) versus p for two different values of
Pjump* Pjump=0 (continuous line) and pj,;,,=0.1 (dotted line). The
parameters of the model are N=200, v=0.03, Iy% =2%, 7=15,
Pine=0.05. Results are averaged over 20 runs.

can explain the behavior of Tp. Similarly, the monotonous
trend shown by the maximum percentage of infected indi-
viduals versus p (Fig. 2) seems more influenced by the mean
node degree than by the characteristic path length of the
interaction network. Namely, the analysis of the dependence
of Iyax Vs (k) shows that a cubic polynomial fits very well
the data. On the other side, fitting the data of Ty vs Ls is a
rather difficult task, as the data are quite irregular.

The parameters L;(¢) and (k);(z) are also evaluated with
respect to different values of the transport parameter pijypp.
Results are shown in Fig. 7. The curve Lg(t) Versus pjymp
reveals a strong similarity with that illustrating the depen-
dence of the synchronization thresholds on the probability
parameter in the so-called blinking model [16]. The blinking
model is a dynamical small-world network in which long-
range connections between any pair of network nodes can be
activated with a given probability for a given period. There-
fore, the whole network has links which change over time
according to a given probability. The characterization of the
synchronization thresholds shows a similar functional depen-
dence on the probability parameter. Since the characteristic

0 0.2 Q4p. 0.6 0.8 1
jump
FIG. 7. Behavior of the model with respect to pjymp. Lg(t;) and
(kY6 (t7) Vs pjump for two different values of p: p=1 (continuous line)
and p=2 (dotted line). The parameters of the model are N=200,
v=0.03, I % =2%, =15, p;,;=0.05. Results are averaged over 20
runs.
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path length is connected with synchronization properties of a
network, this similarity is not surprising and it is reasonable
to state that this kind of behavior is common to dynamical
networks with links which evolve according to a random
process.

Disease control strategies related to the proposed model
are now discussed. The proposed model shares with the
model by Hufnagel et al. [11] the advantage of adopting a
microscopic description of the moving individuals. This sug-
gests new strategies to inhibit the disease spreading, and, in
particular, it suggests to impose movement restrictions to
control the disease spreading. As the behavior of R, and
Inax Versus piyy,, (Fig. 3) and that of Lg and (k); (Fig. 7)
show, a trivial strategy to inhibit the infectious spread is to
reduce pjymp. Furthermore, in the framework of the micro-
scopic description of individual motion, a new strategy can
be defined: to inhibit long-range movements (i.e., the jumps)
of infected individuals. We simulated this case and we ob-
tained that, by using this strategy (with pjy,=0.1), Ry, and
Iax are almost identical to those of the case with pjym,=0.
Thus, adopting this strategy is effective to reduce the number
of recovered and infected individuals. On the other hand, the
parameters L and (k) represent the characteristic of agent
motion, and therefore are able to explain the mechanism of
disease spreading when the disease can effectively spread on
the basis of the agent movements. When infected individuals
are not allowed to perform long-range jumps, one expects
that on average the motion characteristics are similar to the
case in which infected individuals may perform long-range
jumps, but disease spreading is reduced. Simulation results
(not shown) in the case with disease control and pj,,=0.1,
confirmed that R, and [, are similar to the case without
disease control and with pj,,,=0, and Lg and (k)¢ are simi-
lar to the case without disease control and pj,y,,=0.1. Thus,
this strategy reduces the number of infected individuals with-
out significant modifications of the agent motion character-
1stics.

IV. CONCLUSIONS

In this paper a model of infective mobile agents is intro-
duced. The model is investigated under the perspective of the
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dynamical network underlying the time-evolving interactions
between the agents. The agents are random-walkers which,
additionally, may perform long-distance jumps with a given
probability. Therefore the movement of the walkers is a ran-
dom superposition of two walks of the same kind, each with
a different time scale. In these random walks the direction of
the movement is uniformly distributed while the module of
the velocity is constant. The case in which the module of the
velocity vy, of the second random walk is not constant has
been also investigated. Several probability distribution func-
tions for v,, were considered: one with v,, taken from an
uniform distribution and another one with v, taken from a
power-law distribution with exponent y=2. In both cases the
obtained results were intermediate between the two reported
cases. Therefore, the results seem independent on the imple-
mentation of the second random walk.

We showed that a straightforward generalization of the
parameters characteristic of static networks (i.e., the evalua-
tion of instantaneous values of characteristic path length,
mean node degree and clustering coefficient) to the time-
dependent case does not reveal the differences which are
clearly evident by the analysis of disease spreading with
Pjump=0 and pjm, # 0. However, if the key features of the
infective process are taken into account in the definition of a
new matrix of interactions, G(r), the characteristic path
length and the mean node degree calculated on G(¢) are able
to explain the differences between the two cases. Further-
more, the dependence of the characteristic path length of
G(t) on the probability of jump is similar to that observed in
other dynamical networks with links evolved according to a
random process.
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